

Welcome to falcon-auth’s documentation!

Contents:

Table of Contents

	falcon-auth
	Installation

	Usage

	Override Authentication for a specific resource

	Disable Authentication for a specific resource

	Accessing Authenticated User

	Authentication Backends

	Tests

	API

	Contributing
	Getting Started

	Building

	Feature Requests

	Bug Reports

	Pull Requests

	LICENSE

falcon-auth

[image: version] [https://pypi.python.org/pypi/falcon-auth] [image: Documentation Status] [https://falcon-auth.readthedocs.io/en/latest/?badge=latest] [image: build] [https://travis-ci.org/loanzen/falcon-auth] [image: coverage] [https://coveralls.io/github/loanzen/falcon-auth?branch=master] [image: license] [https://pypi.python.org/pypi/falcon-auth/]

A falcon middleware + authentication backends that adds authentication layer
to you app/api service.

Installation

Install the extension with pip, or easy_install.

$ pip install -U falcon-auth

Usage

This package exposes a falcon middleware which takes an authentication backend
as an input and use it to authenticate requests. You can specify some routes and
methods which are exempted from authentication. Once the middleware authenticates
the request using the specified authentication backend, it add the authenticated
user to the request context

import falcon
from falcon_auth import FalconAuthMiddleware, BasicAuthBackend

user_loader = lambda username, password: { 'username': username }
auth_backend = BasicAuthBackend(user_loader)
auth_middleware = FalconAuthMiddleware(auth_backend,
 exempt_routes=['/exempt'], exempt_methods=['HEAD'])
api = falcon.API(middleware=[auth_middleware])

class ApiResource:

 def on_post(self, req, resp):
 user = req.context['user']
 resp.body = "User Found: {}".format(user['username'])

Override Authentication for a specific resource

Its possible to customize the exempt routes, exempt methods and
authentication backend on a per resource basis as well

import falcon
from falcon_auth import FalconAuthMiddleware, BasicAuthBackend, TokenAuthBackend

a loader function to fetch user from username, password
user_loader = lambda username, password: { 'username': username }

basic auth backend
basic_auth = BasicAuthBackend(user_loader)

Auth Middleware that uses basic_auth for authentication
auth_middleware = FalconAuthMiddleware(basic_auth)
api = falcon.API(middleware=[auth_middleware])

class ApiResource:

 auth = {
 'backend': TokenAuthBackend(user_loader=lambda token: { 'id': 5 }),
 'exempt_methods': ['GET']
 }

 # token auth backend

 def on_post(self, req, resp):
 resp.body = "This resource uses token authentication"

 def on_get(self, req, resp):
 resp.body = "This resource doesn't need authentication"

api.add_route("/api", ApiResource())

Disable Authentication for a specific resource

class ApiResource:
 auth = {
 'auth_disabled': True
 }

Accessing Authenticated User

Once the middleware authenticates
the request using the specified authentication backend, it add the authenticated
user to the request context

class ApiResource:

 def on_post(self, req, resp):
 user = req.context['user']
 resp.body = "User Found: {}".format(user['username'])

Authentication Backends

	Basic Authentication

Implements HTTP Basic Authentication [http://tools.ietf.org/html/rfc2617]
wherein the HTTP Authorization header contains the user
credentials(username and password) encoded using base64 and a prefix (typically Basic)

	Token Authentication

Implements a Simple Token Based Authentication Scheme where HTTP Authorization
header contains a prefix (typically Token) followed by an API Token

	JWT Authentication

Token based authentication using the JSON Web Token standard [https://jwt.io/introduction/]

	Dummy Authentication

Backend which does not perform any authentication checks

	Multi Backend Authentication

A Backend which comprises of multiple backends and requires any of them to authenticate
the request successfully

Tests

This library comes with a good set of tests which are included in tests/. To run
install pytest and simply invoke py.test or python setup.py test
to exercise the tests. You can check the test coverage by running
py.test --cov falcon_auth

API

	
class falcon_auth.FalconAuthMiddleware(backend, exempt_routes=None, exempt_methods=None)

	Creates a falcon auth middleware that uses given authentication backend, and some
optinal configuration to authenticate requests. After initializing the
authentication backend globally you can override the backend as well as
other configuration for a particular resource by setting the auth attribute
on it to an instance of this class.

The authentication backend must return an authenticated user which is then
set as request.context.user to be used further down by resources othewise
an falcon.HTTPUnauthorized exception is raised.

	Args:

	
	backend(falcon_auth.backends.AuthBackend, required): Specifies the auth

	backend to be used to authenticate requests

	exempt_routes(list, optional): A list of paths to be excluded while performing

	authentication. Default is None

	exempt_methods(list, optional): A list of paths to be excluded while performing

	authentication. Default is ['OPTIONS']

	
class falcon_auth.BasicAuthBackend(user_loader, auth_header_prefix='Basic')

	Implements HTTP Basic Authentication [http://tools.ietf.org/html/rfc2617]
Clients should authenticate by passing the base64 encoded credentials
username:password in the Authorization HTTP header, prepended with the
string specified in the setting auth_header_prefix. For example:

Authorization: BASIC ZGZkZmY6ZGZkZ2RkZg==

	Args:

	
	user_loader(function, required): A callback function that is called with the user

	credentials (username and password) extracted from the Authorization
header. Returns an authenticated user if user exists matching the
credentials or return None to indicate if no user found or credentials
mismatch.

	auth_header_prefix(string, optional): A prefix that is used with the

	bases64 encoded credentials in the Authorization header. Default is
basic

	
authenticate(req, resp, resource)

	Extract basic auth token from request authorization header, deocode the
token, verifies the username/password and return either a user
object if successful else raise an falcon.HTTPUnauthoried exception

	
get_auth_token(user_payload)

	Extracts username, password from the user_payload and encode the
credentials username:password in base64 form

	
class falcon_auth.TokenAuthBackend(user_loader, auth_header_prefix='Token')

	
	Implements Simple Token Based Authentication. Clients should authenticate by passing the token key in the “Authorization”

	HTTP header, prepended with the string “Token “. For example:

Authorization: Token 401f7ac837da42b97f613d789819ff93537bee6a

	Args:

	
	user_loader(function, required): A callback function that is called

	with the token extracted from the Authorization
header. Returns an authenticated user if user exists matching the
credentials or return None to indicate if no user found or credentials
mismatch.

	auth_header_prefix(string, optional): A prefix that is used with the

	token in the Authorization header. Default is
basic

	
authenticate(req, resp, resource)

	Extract basic auth token from request authorization header, deocode the
token, verifies the username/password and return either a user
object if successful else raise an falcon.HTTPUnauthoried exception

	
get_auth_token(user_payload)

	Extracts token from the user_payload

	
class falcon_auth.JWTAuthBackend(user_loader, secret_key, algorithm='HS256', auth_header_prefix='jwt', leeway=0, expiration_delta=86400, audience=None, issuer=None, verify_claims=None, required_claims=None)

	Token based authentication using the JSON Web Token standard [https://jwt.io/introduction/]
Clients should authenticate by passing the token key in the Authorization
HTTP header, prepended with the string specified in the setting
auth_header_prefix. For example:

Authorization: JWT eyJhbGciOiAiSFMyNTYiLCAidHlwIj

	Args:

	
	user_loader(function, required): A callback function that is called with the

	decoded jwt payload extracted from the Authorization
header. Returns an authenticated user if user exists matching the
credentials or return None to indicate if no user found or credentials
mismatch.

	secrey_key(string, required): A secure key that was used to encode and

	create the jwt token from a dictionary payload

	algorithm(string, optional): Specifies the algorithm that was used

	to for cryptographic signing. Default is HS256 which stands for
HMAC using SHA-256 hash algorithm. Other supported algorithms can be
found here [http://pyjwt.readthedocs.io/en/latest/algorithms.html]

	auth_header_prefix(string, optional): A prefix that is used with the

	bases64 encoded credentials in the Authorization header. Default is
jwt

	leeway(int, optional): Specifies the timedelta in seconds that is allowed

	as leeway while validating expiration time / nbf(not before) claim
/iat (issued at) claim which is in past but not very
far. For example, if you have a JWT payload with an expiration time
set to 30 seconds after creation but you know that sometimes you will
process it after 30 seconds, you can set a leeway of 10 seconds in
order to have some margin. Default is 0 seconds

	expiration_delta(int, optional): Specifies the timedelta in seconds that

	will be added to current time to set the expiration for the token.
Default is 1 day(24 * 60 * 60 seconds)

	audience(string, optional): Specifies the string that will be specified

	as value of aud field in the jwt payload. It will also be checked
agains the aud field while decoding.

	issuer(string, optional): Specifies the string that will be specified

	as value of iss field in the jwt payload. It will also be checked
agains the iss field while decoding.

	
authenticate(req, resp, resource)

	Extract auth token from request authorization header, deocode jwt token,
verify configured claims and return either a user
object if successful else raise an falcon.HTTPUnauthoried exception

	
get_auth_token(user_payload)

	Create a JWT authentication token from user_payload

	Args:

	
	user_payload(dict, required): A dict containing required information

	to create authentication token

	
class falcon_auth.NoneAuthBackend(user_loader)

	Dummy authentication backend.

This backend does not perform any authentication check. It can be used with the
MultiAuthBackend in order to provide a fallback for an unauthenticated user.

	Args:

	
	user_loader(function, required): A callback function that is called

	without any arguments and returns an unauthenticated user.

	
authenticate(req, resp, resource)

	Authenticate the request and return the authenticated user. Must return
None if authentication fails, or raise an exception

	
class falcon_auth.MultiAuthBackend(*backends)

	A backend which takes two or more AuthBackend as inputs and successfully
authenticates if either of them succeeds else raises falcon.HTTPUnauthoried exception

	Args:

	
	backends(AuthBackend, required): A list of AuthBackend to be used in

	order to authenticate the user.

	
authenticate(req, resp, resource)

	Authenticate the request and return the authenticated user. Must return
None if authentication fails, or raise an exception

	
get_auth_token(user_payload)

	Returns a authentication token created using the provided user details

	Args:

	
	user_payload(dict, required): A dict containing required information

	to create authentication token

Contributing

Getting Started

Fork the repository to your own account.

Clone the repository to a suitable location on your local machine.

$git clone https://github.com/loanzen/falcon-auth.git

To update the project from within the project’s folder you can run the following command:

$git pull --rebase

Building

Install the project’s dependencies.

$pip install -r requirements.txt
$pip install -r requirements-dev.txt

Feature Requests

I’m always looking for suggestions to improve this project. If you have a
suggestion for improving an existing feature, or would like to suggest a
completely new feature, please file an issue with my
Github repository [https://github.com/loanzen/falcon-auth/issues]

Bug Reports

You may file bug reports on Github Issues [https://github.com/loanzen/falcon-auth/issues]

Pull Requests

Along with my desire to hear your feedback and suggestions,
I’m also interested in accepting direct assistance in the form of new code or documentation.
Please feel free to file pull requests against my Github repository [https://github.com/loanzen/falcon-auth/issues]

LICENSE

The MIT License (MIT)

Copyright (c) 2017 Ritesh Kadmawala <ritesh@loanzen.in>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

Index

 A
 | B
 | F
 | G
 | J
 | M
 | N
 | T

A

 	
 	authenticate() (falcon_auth.BasicAuthBackend method)

 	(falcon_auth.JWTAuthBackend method)

 	(falcon_auth.MultiAuthBackend method)

 	(falcon_auth.NoneAuthBackend method)

 	(falcon_auth.TokenAuthBackend method)

B

 	
 	BasicAuthBackend (class in falcon_auth)

F

 	
 	FalconAuthMiddleware (class in falcon_auth)

G

 	
 	get_auth_token() (falcon_auth.BasicAuthBackend method)

 	(falcon_auth.JWTAuthBackend method)

 	(falcon_auth.MultiAuthBackend method)

 	(falcon_auth.TokenAuthBackend method)

J

 	
 	JWTAuthBackend (class in falcon_auth)

M

 	
 	MultiAuthBackend (class in falcon_auth)

N

 	
 	NoneAuthBackend (class in falcon_auth)

T

 	
 	TokenAuthBackend (class in falcon_auth)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to falcon-auth’s documentation!

 		
 falcon-auth

 		
 Installation

 		
 Usage

 		
 Override Authentication for a specific resource

 		
 Disable Authentication for a specific resource

 		
 Accessing Authenticated User

 		
 Authentication Backends

 		
 Tests

 		
 API

 		
 Contributing

 		
 Getting Started

 		
 Building

 		
 Feature Requests

 		
 Bug Reports

 		
 Pull Requests

 		
 LICENSE

_static/up-pressed.png

_static/up.png

